A Note on a Non-linear Krein-rutman Theorem

نویسنده

  • RAJESH MAHADEVAN
چکیده

In this note we will present an extension of the Krein-Rutman theorem for an abstract non-linear, compact, positively 1-homogeneous operators on a Banach space having the properties of being increasing with respect to a convex cone K and such that there is a non-zero u ∈ K for which M Tu < u for some positive constant M . This will provide a uniform framework for recovering the Krein-Rutman-like theorems proved for many non-linear differential operators of elliptic type, like the pLaplacian cf. Anane [1], Hardy-Sobolev operator cf. Sreenadh [13], Pucci’s operator cf. Felmer et. al. [6]. Our proof follows the same lines as in the linear case cf. Rabinowitz [12] and is based on a bifurcation theorem.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On the Krein-rutman Theorem and Its Applications to Controllability Vu Ngoc Phat and Trinh

This paper extends Krein-Rutman's theorem on linear operators leaving an invariant cone in infinite-dimensional Banach spaces to multivalued convex functions. The result is applied to obtain necessary and sufficient conditions for global controllability and reachability of nonlinear discrete-time systems described by convex processes.

متن کامل

Positive Operators and an Inertia Theorem

In recent years there has been interest in a theorem on positive definite matrices known as Lyapunov's theorem. Several authors have proved generalizations of this theorem, (WIELANDT [29J, TAUSSKY [24J, [25J, [26J , OSTROWSKISCHNEIDER [20J, GIVENS [10J, CARLSON-SCHNEIDER [3J, CARLSON [4J) . Lyapunov's theorem and its generalizations have become known as inertia theorems. In this note we shall u...

متن کامل

A cone theoretic Krein-Milman theorem in semitopological cones

In this paper, a Krein-Milman  type theorem in $T_0$ semitopological cone is proved,  in general. In fact, it is shown that in any locally convex $T_0$ semitopological cone, every convex compact saturated subset is the compact saturated convex hull of its extreme points, which improves the results of Larrecq.

متن کامل

Functionally closed sets and functionally convex sets in real Banach spaces

‎Let $X$ be a real normed  space, then  $C(subseteq X)$  is  functionally  convex  (briefly, $F$-convex), if  $T(C)subseteq Bbb R $ is  convex for all bounded linear transformations $Tin B(X,R)$; and $K(subseteq X)$  is  functionally   closed (briefly, $F$-closed), if  $T(K)subseteq Bbb R $ is  closed  for all bounded linear transformations $Tin B(X,R)$. We improve the    Krein-Milman theorem  ...

متن کامل

A note on spectral mapping theorem

This paper aims to present the well-known spectral mapping theorem for multi-variable functions.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006